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1. [4 marks] General Concurrency

 

(a) [4 marks] Name the two basic forms of information exchange between processes in con-
current systems. Under which circumstances would you prefer one of these forms over the
other (and visa versa)? (give examples)
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2. [6 marks] Synchronization

 

(a) [3 marks] Define ‘mutual exclusion’ for multiple processes. Which additional properties
do you expect to find in an implementation of a mutual exclusion system?
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(b) [3 marks] Can you construct any form of shared memory based synchronization if sema-
phores are the only supplied synchronization primitive? Detail your answer.
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3. [6 marks] Message Passing

 

(a) [6 marks] Can you emulate asynchronous message passing by means of synchronous mes-
sage passing? If no, explain why not. If yes, give and explain a solution. If not all features
of asynchronous message passing can be emulated, explain the limitations of your solu-
tion.
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4. [16 marks] Scheduling

 

(a) [8 marks] In a single CPU system a large set of tasks needs to be scheduled. In case of

 

unknown computation times

 

 in your task set, which scheduling strategy would apply in
order to minimize:

(i) [4 marks] the average turnaround time

(ii) [4 marks] the maximal turnaround time. 

Answer (i) and (ii) for the two cases that the task-switching delays are very long / very
short.
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(b) [4 marks] Now assume that every task provides with every scheduling request the

 

expected amount of CPU time

 

 which this task will require. Is it useful to change the schedul-
ers which you suggest in part (a) and to incorporate this new information? (You still need
to minimize the same values.) If so: in which ways, if not: why not?
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(c) [4 marks] What is an optimal fixed priority scheduling scheme?
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5. [28 marks] Safety and Liveness

 

(a) [4 marks] Fairness as a means to avoid starvation is a classical liveness property. Explain
the difference between ‘linear waiting’ and ‘first-in, first-out’ fairness concepts. Which of
these two concepts would you more likely find implemented in a distributed system and
why?
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(b) [4 marks] Explain the difference between deadlock prevention and deadlock avoidance.
Give a concrete example (i.e. a possible way to implement such a scheme) for both cases.
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(c) [20 marks] The following Ada program is syntactically correct and will compile without
warnings. Read it carefully. You will notice that two lines are commented out. Consider
case 1 first.

 

procedure Synced_Processes is

   NoOfClients           : constant Positive := 10;
   NoOfExistingResources : constant Positive :=  5;
   NoOfExistingInstances : constant Positive :=  2;

   type    Resource_Ix         is          range 1..NoOfExistingResources;
   subtype Instances_Available is Natural  range 0..NoOfExistingInstances;
   type    Resources_Available is array (Resource_Ix'Range) of Instances_Available;

   protected Resource_Controller is
      entry     Get_Resource             (Resource_Ix);
      procedure Release_Resource (Ix : in Resource_Ix);
   private
      Resources : Resources_Available := (others => NoOfExistingInstances);
   end Resource_Controller;

   protected body Resource_Controller is

      entry Get_Resource (for Ix in Resource_Ix) when Resources (Ix) > 0 is
      begin
         Resources (Ix) := Resources (Ix) - 1;
      end Get_Resource;

      procedure Release_Resource (Ix : in Resource_Ix) is
      begin
         Resources (Ix) := Resources (Ix) + 1;
      end Release_Resource;

   end Resource_Controller;

   task type Client;

   task body Client is

      NoOfClaimedInstances : constant Positive := 1;                           -- case 1
---   NoOfClaimedInstances : constant Positive := NoOfExistingInstances;       -- case 2
---   NoOfClaimedInstances : constant Positive := NoOfExistingInstances + 1;   -- case 3

   begin
      for Ix in Resource_Ix'Range loop
         for Instance in 1..NoOfClaimedInstances loop
            delay 0.0; Resource_Controller.Get_Resource (Ix);
         end loop;
      end loop;

      for Ix in Resource_Ix'Range loop
         for Instance in 1..NoOfClaimedInstances loop
            delay 0.0; Resource_Controller.Release_Resource (Ix);
         end loop;
      end loop;
   end Client;

   Clients : array (1..NoOfClients) of Client;

begin
   null;
end Synced_Processes;
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(i) [1 mark] You will find ‘active’ and ‘passive’ entities in this program. Name all active
entities and the passive entities which are used by those.

(ii) [3 marks] How many task queues are implemented by this program? List and describe
them.
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(iii) [8 marks] Will the program in the presented ‘case 1’ behave deterministically and will
it terminate, deadlock, or livelock? Give precise reasons for all your answers.
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(iv) [8 marks] Now consider cases 2 and 3 (imagine the corresponding line un-commented
and the other two cases commented out). Will the program now terminate, deadlock, or
livelock? Give precise reasons for both cases.



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 15 of 24

 

6. [30 marks] Distributed Systems

 

(a) [4 marks] This question addresses issues associated with virtual (logical) times in distrib-
uted systems. If you find two logical times 

 

C(a)

 

 and 

 

C(b)

 

 attached to events 

 

a

 

 and 

 

b

 

 in dif-
ferent processes, then what can you conclude if:

(i) 

 

C(a)

 

 

 

≠

 

 

 

C(b)

 

(ii) 

 

C(a)

 

 < 

 

C(b)

 

Alternatively, if you know something about the relation between the events 

 

a

 

 and 

 

b

 

 in a
distributed system, what can you conclude about their logical times 

 

C(a)

 

 and 

 

C(b)

 

 if:

(iii) 

 

a

 

 happened concurrently with 

 

b

 

(iv) 

 

a

 

 refers to the sending event and 

 

b

 

 refers to the receiving event of the same message
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(b) [4 marks] Suggest a practical distributed system where you would implement a two-phase
locking transaction scheduler, and one practical distributed system where you would
implement a time-stamp ordering transaction scheduler. Give reasons for your decisions.
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(c) [22 marks] Consider the Ada code below (which compiles without warning). The program
implements a complete token ring structure including token recovery in case of a token
loss. All tasks in the ring are identical besides their unique id. It is assumed that a network
based message passing system is employed for all entry calls between nodes on the ring. It
is further assumed that the maximal message passing delay for a complete cycle along the
ring is known (and expressed in 

 

Longer_Than_Any_Cycle_Can_Take

 

).

 

with Ada.Real_Time; use Ada.Real_Time;

procedure Token_Ring is

   type Ring_Range is mod 10;

   task type Chain_Link is
      entry Set_Link_Id (Link_Id   : in Ring_Range);
      entry Token;
      entry Recovery    (Initiator : in Ring_Range);
   end Chain_Link;

   Chain_Links : array (Ring_Range) of Chain_Link;

   task body Chain_Link is

      Id : Ring_Range;

   begin
      accept Set_Link_Id (Link_Id : in Ring_Range) do
         Id := Link_Id;
      end Set_Link_Id;

      declare
         Longer_Than_Any_Cycle_Can_Take : constant Time_Span := milliseconds (1000);
         Ring_Broken_Time_Out           : constant Time_Span := milliseconds (3000);

         Next_Link         : constant Ring_Range := Ring_Range'succ (Id);
         Initiator_Id      : Ring_Range;
         Cycle_Start_Time,
         Token_Sighting    : Time                := Clock;

         task Initiate is
            entry Recovery;
         end Initiate;

         task body Initiate is

         begin
            loop
               select
                  accept Recovery;
               or
                  terminate;
               end select;
               Chain_Links (Next_Link).Recovery (Id);
            end loop;
         end Initiate;

 

(continued on next page)
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      begin
         loop
            select
               accept Token;

               Token_Sighting   := Clock;
               Cycle_Start_Time := Clock;
               --Chain_Links (Next_Link).Token;

            or accept Recovery (Initiator : in Ring_Range) do
                  Initiator_Id := Initiator;
               end Recovery;

               if Initiator_Id = Id then
                  Chain_Links (Next_Link).Token;
                  Cycle_Start_Time := Clock;
               elsif Initiator_Id > Id then
                  Chain_Links (Next_Link).Recovery (Initiator_Id);
               end if;

            or delay until Cycle_Start_Time + Longer_Than_Any_Cycle_Can_Take;

               Initiate.Recovery;
               Cycle_Start_Time := Clock;

            or delay until Token_Sighting + Ring_Broken_Time_Out;

               exit;

            end select;
         end loop;

      exception
         when Tasking_Error => null; -- Next_Link not callable
      end;
   end Chain_Link;

begin
   for i in Chain_Links'Range loop
      Chain_Links (i).Set_Link_Id (i);
   end loop;
end Token_Ring;

 

(i) [2 marks] You will find a 

 

select-or-delay

 

 statement with two delay alternatives in
the main loop of the 

 

Chain_Link

 

 tasks. Describe the meaning of those two alternatives. 
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(ii) [2 marks] Absolute delays (‘

 

delay until

 

’) are employed in this example. Would it be
possible to use relative delays instead for the same purpose? If yes: how? if no: why not?

(iii) [2 marks] What is the purpose of the task 

 

Initiate

 

? Specifically: why is the only call
which 

 

Initiate

 

 makes not simply done directly inside the task 

 

Chain_Link

 

 itself?
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(iv) [8 marks] When (approximately in seconds after program start) is a ‘token’ provided
and by whom? Explain your answer. How many messages have been exchanged (mini-
mally and maximally) before this happens?
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(v) [8 marks] Will the program deadlock, livelock, run infinitely, or terminate (assuming a
fully reliable message passing system)? What is the probability of termination in case of a
1% probability of a message loss between the chain links (it corresponds here to a 1%
probability that an entry call to another Chain_Link task are omitted without any error
message or exception). Calculate this probability only for the case that a token is already in
circulation (i.e. ignore the first start-up phase in your calculation). Give reasons for your
answers.
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continuation of answer to question  part 

continuation of answer to question  part 
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continuation of answer to question  part 

continuation of answer to question  part 
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