
The Australian National University
Second Semester Examination – November 2006

 

COMP2310
Concurrent and Distributed Systems

 

Study period: 15 minutes
Time allowed: 3 hours

Total marks: 100
Permitted materials: None

Questions are 

 

not

 

 equally weighted – sizes of answer boxes do 

 

not

 

necessarily relate to the number of marks given for this question.

 

All your answers must be written in the boxes provided in this booklet.  You will be provided with scrap paper
for working, but only those answers written in this booklet will be marked. Do not remove this booklet from
the examination room. There is additional space at the end of the booklet in case the boxes provided are insuf-
ficient. Label any answer you write at the end of the booklet with the number of the question it refers to.

Greater marks will be awarded for answers that are simple, short and concrete than for answers of a sketchy
and rambling nature. Marks will be lost for giving information that is irrelevant to a question.

The following are for use by the examiners

           

Name (family name first):

Student number:

Q1 mark Q2 mark Q3 mark Q4 mark Q5 mark Q6 mark Total mark



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 2 of 24

 

1. [4 marks] General Concurrency

 

(a) [4 marks] Name the two basic forms of information exchange between processes in con-
current systems. Under which circumstances would you prefer one of these forms over the
other (and visa versa)? (give examples)



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 3 of 24

 

2. [6 marks] Synchronization

 

(a) [3 marks] Define ‘mutual exclusion’ for multiple processes. Which additional properties
do you expect to find in an implementation of a mutual exclusion system?



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 4 of 24

 

(b) [3 marks] Can you construct any form of shared memory based synchronization if sema-
phores are the only supplied synchronization primitive? Detail your answer.



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 5 of 24

 

3. [6 marks] Message Passing

 

(a) [6 marks] Can you emulate asynchronous message passing by means of synchronous mes-
sage passing? If no, explain why not. If yes, give and explain a solution. If not all features
of asynchronous message passing can be emulated, explain the limitations of your solu-
tion.



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 6 of 24

 

4. [16 marks] Scheduling

 

(a) [8 marks] In a single CPU system a large set of tasks needs to be scheduled. In case of

 

unknown computation times

 

 in your task set, which scheduling strategy would apply in
order to minimize:

(i) [4 marks] the average turnaround time

(ii) [4 marks] the maximal turnaround time. 

Answer (i) and (ii) for the two cases that the task-switching delays are very long / very
short.



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 7 of 24

 

(b) [4 marks] Now assume that every task provides with every scheduling request the

 

expected amount of CPU time

 

 which this task will require. Is it useful to change the schedul-
ers which you suggest in part (a) and to incorporate this new information? (You still need
to minimize the same values.) If so: in which ways, if not: why not?



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 8 of 24

 

(c) [4 marks] What is an optimal fixed priority scheduling scheme?



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 9 of 24

 

5. [28 marks] Safety and Liveness

 

(a) [4 marks] Fairness as a means to avoid starvation is a classical liveness property. Explain
the difference between ‘linear waiting’ and ‘first-in, first-out’ fairness concepts. Which of
these two concepts would you more likely find implemented in a distributed system and
why?



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 10 of 24

 

(b) [4 marks] Explain the difference between deadlock prevention and deadlock avoidance.
Give a concrete example (i.e. a possible way to implement such a scheme) for both cases.



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 11 of 24

 

(c) [20 marks] The following Ada program is syntactically correct and will compile without
warnings. Read it carefully. You will notice that two lines are commented out. Consider
case 1 first.

 

procedure Synced_Processes is

   NoOfClients           : constant Positive := 10;
   NoOfExistingResources : constant Positive :=  5;
   NoOfExistingInstances : constant Positive :=  2;

   type    Resource_Ix         is          range 1..NoOfExistingResources;
   subtype Instances_Available is Natural  range 0..NoOfExistingInstances;
   type    Resources_Available is array (Resource_Ix'Range) of Instances_Available;

   protected Resource_Controller is
      entry     Get_Resource             (Resource_Ix);
      procedure Release_Resource (Ix : in Resource_Ix);
   private
      Resources : Resources_Available := (others => NoOfExistingInstances);
   end Resource_Controller;

   protected body Resource_Controller is

      entry Get_Resource (for Ix in Resource_Ix) when Resources (Ix) > 0 is
      begin
         Resources (Ix) := Resources (Ix) - 1;
      end Get_Resource;

      procedure Release_Resource (Ix : in Resource_Ix) is
      begin
         Resources (Ix) := Resources (Ix) + 1;
      end Release_Resource;

   end Resource_Controller;

   task type Client;

   task body Client is

      NoOfClaimedInstances : constant Positive := 1;                           -- case 1
---   NoOfClaimedInstances : constant Positive := NoOfExistingInstances;       -- case 2
---   NoOfClaimedInstances : constant Positive := NoOfExistingInstances + 1;   -- case 3

   begin
      for Ix in Resource_Ix'Range loop
         for Instance in 1..NoOfClaimedInstances loop
            delay 0.0; Resource_Controller.Get_Resource (Ix);
         end loop;
      end loop;

      for Ix in Resource_Ix'Range loop
         for Instance in 1..NoOfClaimedInstances loop
            delay 0.0; Resource_Controller.Release_Resource (Ix);
         end loop;
      end loop;
   end Client;

   Clients : array (1..NoOfClients) of Client;

begin
   null;
end Synced_Processes;



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 12 of 24

 

(i) [1 mark] You will find ‘active’ and ‘passive’ entities in this program. Name all active
entities and the passive entities which are used by those.

(ii) [3 marks] How many task queues are implemented by this program? List and describe
them.



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 13 of 24

 

(iii) [8 marks] Will the program in the presented ‘case 1’ behave deterministically and will
it terminate, deadlock, or livelock? Give precise reasons for all your answers.



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 14 of 24

 

(iv) [8 marks] Now consider cases 2 and 3 (imagine the corresponding line un-commented
and the other two cases commented out). Will the program now terminate, deadlock, or
livelock? Give precise reasons for both cases.



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 15 of 24

 

6. [30 marks] Distributed Systems

 

(a) [4 marks] This question addresses issues associated with virtual (logical) times in distrib-
uted systems. If you find two logical times 

 

C(a)

 

 and 

 

C(b)

 

 attached to events 

 

a

 

 and 

 

b

 

 in dif-
ferent processes, then what can you conclude if:

(i) 

 

C(a)

 

 

 

≠

 

 

 

C(b)

 

(ii) 

 

C(a)

 

 < 

 

C(b)

 

Alternatively, if you know something about the relation between the events 

 

a

 

 and 

 

b

 

 in a
distributed system, what can you conclude about their logical times 

 

C(a)

 

 and 

 

C(b)

 

 if:

(iii) 

 

a

 

 happened concurrently with 

 

b

 

(iv) 

 

a

 

 refers to the sending event and 

 

b

 

 refers to the receiving event of the same message



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 16 of 24

 

(b) [4 marks] Suggest a practical distributed system where you would implement a two-phase
locking transaction scheduler, and one practical distributed system where you would
implement a time-stamp ordering transaction scheduler. Give reasons for your decisions.



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 17 of 24

 

(c) [22 marks] Consider the Ada code below (which compiles without warning). The program
implements a complete token ring structure including token recovery in case of a token
loss. All tasks in the ring are identical besides their unique id. It is assumed that a network
based message passing system is employed for all entry calls between nodes on the ring. It
is further assumed that the maximal message passing delay for a complete cycle along the
ring is known (and expressed in 

 

Longer_Than_Any_Cycle_Can_Take

 

).

 

with Ada.Real_Time; use Ada.Real_Time;

procedure Token_Ring is

   type Ring_Range is mod 10;

   task type Chain_Link is
      entry Set_Link_Id (Link_Id   : in Ring_Range);
      entry Token;
      entry Recovery    (Initiator : in Ring_Range);
   end Chain_Link;

   Chain_Links : array (Ring_Range) of Chain_Link;

   task body Chain_Link is

      Id : Ring_Range;

   begin
      accept Set_Link_Id (Link_Id : in Ring_Range) do
         Id := Link_Id;
      end Set_Link_Id;

      declare
         Longer_Than_Any_Cycle_Can_Take : constant Time_Span := milliseconds (1000);
         Ring_Broken_Time_Out           : constant Time_Span := milliseconds (3000);

         Next_Link         : constant Ring_Range := Ring_Range'succ (Id);
         Initiator_Id      : Ring_Range;
         Cycle_Start_Time,
         Token_Sighting    : Time                := Clock;

         task Initiate is
            entry Recovery;
         end Initiate;

         task body Initiate is

         begin
            loop
               select
                  accept Recovery;
               or
                  terminate;
               end select;
               Chain_Links (Next_Link).Recovery (Id);
            end loop;
         end Initiate;

 

(continued on next page)



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 18 of 24

 

      begin
         loop
            select
               accept Token;

               Token_Sighting   := Clock;
               Cycle_Start_Time := Clock;
               --Chain_Links (Next_Link).Token;

            or accept Recovery (Initiator : in Ring_Range) do
                  Initiator_Id := Initiator;
               end Recovery;

               if Initiator_Id = Id then
                  Chain_Links (Next_Link).Token;
                  Cycle_Start_Time := Clock;
               elsif Initiator_Id > Id then
                  Chain_Links (Next_Link).Recovery (Initiator_Id);
               end if;

            or delay until Cycle_Start_Time + Longer_Than_Any_Cycle_Can_Take;

               Initiate.Recovery;
               Cycle_Start_Time := Clock;

            or delay until Token_Sighting + Ring_Broken_Time_Out;

               exit;

            end select;
         end loop;

      exception
         when Tasking_Error => null; -- Next_Link not callable
      end;
   end Chain_Link;

begin
   for i in Chain_Links'Range loop
      Chain_Links (i).Set_Link_Id (i);
   end loop;
end Token_Ring;

 

(i) [2 marks] You will find a 

 

select-or-delay

 

 statement with two delay alternatives in
the main loop of the 

 

Chain_Link

 

 tasks. Describe the meaning of those two alternatives. 



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 19 of 24

 

(ii) [2 marks] Absolute delays (‘

 

delay until

 

’) are employed in this example. Would it be
possible to use relative delays instead for the same purpose? If yes: how? if no: why not?

(iii) [2 marks] What is the purpose of the task 

 

Initiate

 

? Specifically: why is the only call
which 

 

Initiate

 

 makes not simply done directly inside the task 

 

Chain_Link

 

 itself?



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 20 of 24

 

(iv) [8 marks] When (approximately in seconds after program start) is a ‘token’ provided
and by whom? Explain your answer. How many messages have been exchanged (mini-
mally and maximally) before this happens?



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 21 of 24

 

(v) [8 marks] Will the program deadlock, livelock, run infinitely, or terminate (assuming a
fully reliable message passing system)? What is the probability of termination in case of a
1% probability of a message loss between the chain links (it corresponds here to a 1%
probability that an entry call to another Chain_Link task are omitted without any error
message or exception). Calculate this probability only for the case that a token is already in
circulation (i.e. ignore the first start-up phase in your calculation). Give reasons for your
answers.



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 22 of 24

 

continuation of answer to question  part 

continuation of answer to question  part 



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 23 of 24

 

continuation of answer to question  part 

continuation of answer to question  part 



 

Student number:............................................

COMP2310 Second Semester Exam 2006 Page 24 of 24

 

continuation of answer to question  part 

continuation of answer to question  part 


